Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Rev Allergy Immunol ; 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-2232239

ABSTRACT

The cardiovascular system is frequently affected by coronavirus disease-19 (COVID-19), particularly in hospitalized cases, and these manifestations are associated with a worse prognosis. Most commonly, heart involvement is represented by myocarditis, myocardial infarction, and pulmonary embolism, while arrhythmias, heart valve damage, and pericarditis are less frequent. While the clinical suspicion is necessary for a prompt disease recognition, imaging allows the early detection of cardiovascular complications in patients with COVID-19. The combination of cardiothoracic approaches has been proposed for advanced imaging techniques, i.e., CT scan and MRI, for a simultaneous evaluation of cardiovascular structures, pulmonary arteries, and lung parenchyma. Several mechanisms have been proposed to explain the cardiovascular injury, and among these, it is established that the host immune system is responsible for the aberrant response characterizing severe COVID-19 and inducing organ-specific injury. We illustrate novel evidence to support the hypothesis that molecular mimicry may be the immunological mechanism for myocarditis in COVID-19. The present article provides a comprehensive review of the available evidence of the immune mechanisms of the COVID-19 cardiovascular injury and the imaging tools to be used in the diagnostic workup. As some of these techniques cannot be implemented for general screening of all cases, we critically discuss the need to maximize the sustainability and the specificity of the proposed tests while illustrating the findings of some paradigmatic cases.

2.
Tomography ; 8(3): 1578-1585, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1964057

ABSTRACT

(1) Background: Quantitative CT analysis (QCT) has demonstrated promising results in the prognosis prediction of patients affected by COVID-19. We implemented QCT not only at diagnosis but also at short-term follow-up, pairing it with a clinical examination in search of a correlation between residual respiratory symptoms and abnormal QCT results. (2) Methods: In this prospective monocentric trial performed during the "first wave" of the Italian pandemic, i.e., from March to May 2020, we aimed to test the relationship between %deltaCL (variation of %CL-compromised lung volume) and variations of symptoms-dyspnea, cough and chest pain-at follow-up clinical assessment after hospitalization. (3) Results: 282 patients (95 females, 34%) with a median age of 60 years (IQR, 51-69) were included. We reported a correlation between changing lung abnormalities measured by QCT, and residual symptoms at short-term follow up after COVID-19 pneumonia. Independently from age, a low percentage of surviving patients (1-4%) may present residual respiratory symptoms at approximately two months after discharge. QCT was able to quantify the extent of residual lung damage underlying such symptoms, as the reduction of both %PAL (poorly aerated lung) and %CL volumes was correlated to their disappearance. (4) Conclusions QCT may be used as an objective metric for the measurement of COVID-19 sequelae.


Subject(s)
COVID-19 , Aged , COVID-19/diagnostic imaging , Female , Humans , Infant , Lung/diagnostic imaging , Middle Aged , Pandemics , Prospective Studies , Tomography, X-Ray Computed/methods
3.
Emerg Radiol ; 29(2): 243-262, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1634393

ABSTRACT

Infection with SARS-CoV-2 has dominated discussion and caused global healthcare and economic crisis over the past 18 months. Coronavirus disease 19 (COVID-19) causes mild-to-moderate symptoms in most individuals. However, rapid deterioration to severe disease with or without acute respiratory distress syndrome (ARDS) can occur within 1-2 weeks from the onset of symptoms in a proportion of patients. Early identification by risk stratifying such patients who are at risk of severe complications of COVID-19 is of great clinical importance. Computed tomography (CT) is widely available and offers the potential for fast triage, robust, rapid, and minimally invasive diagnosis: Ground glass opacities (GGO), crazy-paving pattern (GGO with superimposed septal thickening), and consolidation are the most common chest CT findings in COVID pneumonia. There is growing interest in the prognostic value of baseline chest CT since an early risk stratification of patients with COVID-19 would allow for better resource allocation and could help improve outcomes. Recent studies have demonstrated the utility of baseline chest CT to predict intensive care unit (ICU) admission in patients with COVID-19. Furthermore, developments and progress integrating artificial intelligence (AI) with computer-aided design (CAD) software for diagnostic imaging allow for objective, unbiased, and rapid assessment of CT images.


Subject(s)
COVID-19 , Artificial Intelligence , Follow-Up Studies , Humans , Intensive Care Units , Prognosis , SARS-CoV-2 , Tomography, X-Ray Computed/methods
4.
Diagnostics (Basel) ; 11(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325616

ABSTRACT

Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT.

5.
Int J Environ Res Public Health ; 18(6)2021 03 11.
Article in English | MEDLINE | ID: covidwho-1125507

ABSTRACT

Since December 2019, the world has been devastated by the Coronavirus Disease 2019 (COVID-19) pandemic. Emergency Departments have been experiencing situations of urgency where clinical experts, without long experience and mature means in the fight against COVID-19, have to rapidly decide the most proper patient treatment. In this context, we introduce an artificially intelligent tool for effective and efficient Computed Tomography (CT)-based risk assessment to improve treatment and patient care. In this paper, we introduce a data-driven approach built on top of volume-of-interest aware deep neural networks for automatic COVID-19 patient risk assessment (discharged, hospitalized, intensive care unit) based on lung infection quantization through segmentation and, subsequently, CT classification. We tackle the high and varying dimensionality of the CT input by detecting and analyzing only a sub-volume of the CT, the Volume-of-Interest (VoI). Differently from recent strategies that consider infected CT slices without requiring any spatial coherency between them, or use the whole lung volume by applying abrupt and lossy volume down-sampling, we assess only the "most infected volume" composed of slices at its original spatial resolution. To achieve the above, we create, present and publish a new labeled and annotated CT dataset with 626 CT samples from COVID-19 patients. The comparison against such strategies proves the effectiveness of our VoI-based approach. We achieve remarkable performance on patient risk assessment evaluated on balanced data by reaching 88.88%, 89.77%, 94.73% and 88.88% accuracy, sensitivity, specificity and F1-score, respectively.


Subject(s)
COVID-19 , Humans , Neural Networks, Computer , Risk Assessment , SARS-CoV-2 , Tomography, X-Ray Computed
6.
BMC Infect Dis ; 21(1): 232, 2021 Feb 27.
Article in English | MEDLINE | ID: covidwho-1105699

ABSTRACT

BACKGROUND: Although there are reports of otolaryngological symptoms and manifestations of CoronaVirus Disease 19 (COVID-19), there have been no documented cases of sudden neck swelling with rash in patients with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection described in literature. CASE PRESENTATION: We report a case of a sudden neck swelling and rash likely due to late SARS-CoV-2 in a 64-year-old woman. The patient reported COVID-19 symptoms over the previous three weeks. Computed Tomography (CT) revealed a diffuse soft-tissue swelling and edema of subcutaneous tissue, hypodermis, and muscular and deep fascial planes. All the differential diagnoses were ruled out. Both the anamnestic history of the patient's husband who had died of COVID-19 with and the collateral findings of pneumonia and esophageal wall edema suggested the association with COVID-19. This was confirmed by nasopharyngeal swab polymerase chain reaction. The patient was treated with lopinavir/ritonavir, hydroxychloroquine and piperacillin/tazobactam for 7 days. The neck swelling resolved in less than 24 h, while the erythema was still present up to two days later. The patient was discharged after seven days in good clinical condition and with a negative swab. CONCLUSION: Sudden neck swelling with rash may be a coincidental presentation, but, in the pandemic context, it is most likely a direct or indirect complication of COVID-19.


Subject(s)
COVID-19/complications , Exanthema/etiology , SARS-CoV-2 , COVID-19/diagnostic imaging , Edema/etiology , Female , Humans , Middle Aged , Neck/pathology , Tomography, X-Ray Computed , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL